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We investigated the dynamics of single DNA molecules driven by the electrophoretic force in several
tapered contraction-expansion microchannels. Under high localized electric-field gradients, fast transition be-
tween the stretching and compression of DNA molecules was achieved. Numerically, a combination of the
finite element method and the coarse-grained Brownian dynamics simulation was used to capture the dynamics
of single DNA molecules simplified as freely-draining bead-spring wormlike chains. A generalized predictor-
corrector time marching scheme was proposed in this work. It was found that the initial conformation, the
initial center-of-mass location, and the electric-field strength are three major factors affecting the DNA dynam-
ics. The forced relaxation due to the reverse compression in the expansion zone can speed the relaxation of
DNA molecules compared with the free relaxation in the bulk. We have also simulated DNA dynamics in
different contraction-expansion microchannels by changing the length or the small-end width of the contraction
zone �with other geometrical lengths fixed�. Decreasing the small-end width can provide higher DNA stretch-
ing due to both increased Deborah number and increased accumulated strain. Increasing the length of the
contraction zone, on the other hand, only slightly increases the accumulated strain, while greatly decreases the
Deborah number, causing a decrease in DNA stretching. Experimentally, DNA molecules were gradually
stretched in the contraction zone and then were quickly compressed back within a short distance outside the
contraction zone. DNA chains in different initial configurations demonstrate different behaviors in contraction-
expansion microchannels. The Brownian dynamics simulation results are in qualitative agreement with the
experimental observations.
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I. INTRODUCTION

The dynamics of single DNA molecules in micro/
nanofluidics has attracted a great deal of attention because of
its importance in many biomedical applications such as DNA
separation, DNA conjugation, gene mapping, and gene deliv-
ery. These applications require controlled manipulation such
as moving, stretching, condensing, and packing of individual
DNA molecules. There are many ways to manipulate a large
number of DNA molecules at the micro/nanoscale using me-
chanical �1–3�, hydrodynamic �4,5�, electrokinetic �electro-
osmotic, electrophoretic, and dielectrophoretic� forces �6,7�
or their combination. Mechanical force based approaches,
such as optical tweezers, magnetic tweezers, and atomic
force microscopy �AFM�, are suitable for stretching or twist-
ing a single DNA molecule into different shapes, but they are
difficult for large-scale multi-DNA manipulation due to high
cost and complicated operation. Hydrodynamic forces work
very well in many microscaled systems. However, the ex-
erted pressure needs to increase greatly in order to keep the
flow flux the same as the channel size decreases because the
pressure drop in a straight rectangular channel is a reciprocal
cubic function of the channel width when the fluid flux is

constant, e.g., �p
L = 12�Q

DW3 , where �p is the pressure drop, � is
the viscosity, Q is the flow flux; L, D, and W are the length,
depth, and width of the channel, respectively. Since most
micro/nanofluidic devices are made of silicon, glass or poly-
mer, they cannot sustain very high pressure; thus hydrody-
namic forces are not applied in aqueous solutions when the
channel size is small. Electrokinetic forces are attractive al-
ternatives to the hydrodynamic and mechanical forces. One
can generate different flow patterns such as extensional, ro-
tational, and shear flows using electro-osmosis by controlling
the surface charge density and type �8–10�. To move charged
particles, electrophoresis can be applied without much fluid
flow and this unique advantage has been utilized in many
biomedical applications.

The contraction-expansion structure �either abrupt or ta-
pered� is very common in micro/nanofluidic devices. Since
the electric field E satisfies the divergence-free condition
� ·E=0, its magnitude increases in the contraction zone,
while decreases in the expansion zone. As we show in Fig.
S.1 of the supplemental material, the tapered contraction-
expansion channel can achieve higher magnitude of electric
field than the abrupt counterparts at the same conditions.
Thus the tapered contraction zone can be utilized to acceler-
ate the movement of DNA molecules and stretch them in a
short distance because of an increasing electric field and gra-
dient, while the expansion zone serves as a damper to decel-
erate the DNA molecules and compress them back to the
equilibrium state.
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DNA dynamics in either abrupt or tapered contraction-
expansion channel has been studied by many researchers. By
using the electrophoretic force, the “entropy trapping”
method has demonstrated that the larger T2-DNA molecules
move faster than the smaller T7-DNA molecules in the well-
defined abrupt contraction-expansion nanoarrays �11�. The
Brownian dynamics simulation has been carried out to inves-
tigate the electrophoretic migration of DNA molecules in the
entropy trapping nanochannel and achieved good qualitative
agreement with experimental results �12,13�. However, when
the aspect ratio and the size of the entropy trap array change,
the smaller �-DNA molecules move faster than the larger
T2-DNA molecules in the abrupt contraction-expansion mi-
croarray �14�, indicating that this type of separation mecha-
nism is highly size dependent and the electric-field distribu-
tion plays an important role in the DNA separation. These
studies mainly concentrated on the effect of electric field on
the DNA separation without considering single DNA dynam-
ics in different zones of the channels. Experimental study
and numerical simulation on DNA stretching in a nearly con-
stant gradient of electric field produced by a hyperbolic con-
traction microchannel were first reported by Doyle and co-
workers �15,16�. It was found that the fractional extension of
DNA molecules increases with the Deborah number and it
can be further increased by prestretching the DNA molecules
using a gel matrix near the entry of the hyperbolic contrac-
tion microchannel. DNA dynamics in contraction microchan-
nels with different shapes has also been studied �16�, but the
behavior of DNA molecules, especially the forced relaxation
�or compression� in the expansion zone were not addressed.
Also the effects of contraction length and small-end size on
DNA stretching have not been studied.

Overall, DNA dynamics driven by the electrophoretic
force in the microscaled tapered contraction-expansion chan-
nel is still not fully understood; especially the effects of ge-
ometry and electric field on DNA dynamics need to be thor-
oughly investigated. In this paper, we numerically studied
the electrophoretic migration of DNA molecules in four ta-
pered contraction-expansion microchannels with different
length of contraction zone or width of the small end. Figure
1 shows a typical tapered contraction-expansion microchan-
nel with the total length between two reservoirs L, the width
of expansion zone W, the length of contraction zone l, the
small-end width of the contraction zone dS, and the large-end
width of the contraction zone dL. The values of L, W, and dL
are fixed, i.e., 1.5 cm, 300 �m, and 130 �m, respectively.
Table I shows the lengths of contraction zones and small-end
sizes of these four channels. Experimentally, we compared

the effects of the initial configuration and the initial location
on the dynamics of single DNA molecules in channel no. 1
with simulations.

This paper is organized as follows. Section I is a brief
introduction. Section II concentrates on the simulation pro-
cesses of the DNA dynamics in the electrophoretically driven
contraction-expansion flow. First, we propose a generalized
predictor-corrector method for the bead-spring wormlike
chain model under a nonuniform electric-field gradient. Sec-
ond, we use the finite element method �FEM� to solve the
electric field and analyze the electric-field gradient, the path-
dependent Deborah numbers, and accumulated strains along
different electric-field lines. Then the procedure of the
Brownian dynamics simulation of single DNA molecules is
given. In Sec. III, we discuss the effects of initial conforma-
tion, initial center-of-mass location, electric-field strength,
and geometry of microchannels on DNA dynamics. Com-
parison between the simulations and experimental results is
also given. Finally, the conclusion is drawn in Sec. IV.

II. SIMULATION PROCESSES

A. Brownian dynamics simulation using
the bead-spring chain model

The contour length of a fluorescence-dyed �-DNA mol-
ecule is around 21 �m, while its diameter is only 2 nm, thus
the aspect ratio is up to 104. To simulate the conformation
change of such large molecules in an affordable way, a
coarse-grained approach is often used, which neglects the
detailed molecular structures of DNA molecules, while cap-
tures their movement and conformation changes. This ap-
proach is the Brownian dynamics simulation �BDS� and has
been successfully used in the simulation of single DNA dy-
namics in both hydrodynamically and electrophoretically
driven flows �17–23�.

In this study, we use the bead-spring chain model to simu-
late DNA dynamics. A bead-spring �-DNA chain consists of
N=20 beads connected by NS=N−1=19 elastic springs.
There are NK=NK,SNS=152 total Kuhn steps in one chain
with NK,S=8 Kuhn steps in each spring. The contour length
of a labeled DNA is LC=NKbK=21 �m, where bK
=0.138 �m is the length of one Kuhn step. The hydrody-
namic interaction between DNA segments and the solid wall
is neglected in this study either because its contribution is
small or its effect can be partially included by using an “ef-
fective” drag coefficient �24,25�. The final dimensionless
governing equation is given as

FIG. 1. �Color online� Schematics of a contraction-expansion
microchannel.

TABLE I. Lengths and small-end sizes of four contraction
channels.

Channel number
Length of contraction

zone ��m�
Width of the small

end ��m�

1 300 20

2 300 10

3 100 20

4 20 20
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dri

dt
= Pe1ui + Pe2Ei + fi

r + fi
s,total, �1�

where coordinates, time, velocity and electric fields are non-
dimensionalized by b=�NK,SbK, �NKbK

2 /kBT �which is the
characteristic time�, the characteristic velocity Uref, and char-
acteristic electric-field strength EC, respectively. In this pa-
per, � is the drag coefficient for one bead. EC=�� /dS, where
�� is the potential difference between two reservoirs. Both
Pe1=

Uref

�kBT�/�b�� and Pe2=
�EPEC

�kBT�/�b�� are the parameters defining

the ratio of characteristic flow �either hydrodynamic or elec-
trophoretic� velocity to bead diffusion velocity, or the ratio of
the bead diffusion time to the characteristic flow time �thus
they are similar to the Péclet number in a convection-
diffusion partial differential equation�. �EP=q /� is the DNA
EP mobility and q is the charge density for each bead. The
dimensionless Brownian force is fi

r=�6 /�tni, where ni is a
three-dimensional �3D� uniform random number in �−1,1�.
In the simulation, we select an initial seed and use a pseudo-
random number generator to generate a 3D random number
vector for ni at different time step, thus all these 3D random
number vectors form a series with the same seed. The selec-
tion of the initial random seed is associated with the chain
number since different chains have different chain numbers
or initial conformations. Thus in the simulation, different
chains have different Brownian forces even if their initial
center-of-mass locations are the same. The dimensionless
total spring force on bead i is given by f i

s,total= fi
s− fi−1

s

with the ith spring force satisfies the wormlike chain
�WLC� model �26,27�, fi

s=�� 1
2�i�1−�i�2 − 1

2�i
+2��ri+1−ri�,

where �i= �ri+1−ri� /�NK,S, �=bK / �2�p
eff�, and �p

eff is the
“effective” persistence length �18�. For a DNA chain with
20 beads, we use NK,S=8, �p

eff=0.096 �m, bK=0.132 �m,
and �=0.6875.

Equation �1� can be explicitly rewritten as

dri = �Pe1ui + Pe2Ei�dt + �fi
s − fi−1

s �dt + fi
rdt , �2�

which is a time evolution equation and needs to be solved
using a time integration �or time marching� method. Because
each spring has a maximum extensibility in the wormlike
chain model, the conventional marching schemes such as the
forward Euler’s method or midpoint method cannot guaran-
tee that the length of each spring will never exceed its maxi-
mum unless a very small time step size is used. To avoid this
physical discrepancy, a multi-predictor-corrector method has
been developed for the flow with a constant velocity gradient
tensor �28�. Here, we modified this method and extended it
to the more general case where the gradient of the velocity or
the electric field is no longer constant. The main idea is first
to predict the movement of the center of mass of a chain
using the fourth-order Runge-Kutter method, then to use the
calculated spring vectors to determine each bead location
and update the flow and electric fields at each bead location.
The procedures are given as follows �29�:

�i� Calculation of the movement of the center of mass of a
chain

The movement of the center of mass rC= 1
N�i=1

N ri is gov-
erned by

drC = �Pe1u�rC� + Pe2E�rC��dt +
1

N
�
i=1

N

fi
rdt . �3�

Since Eq. �3� is an independent equation, we can use the
fourth-order Runge-Kutta method to calculate the location of
the center of mass at time n+1.

�ii� Predictor steps
We have the following equation for the ith spring vector

Ri:

dRi = Pe1�ui+1 − ui�dt + Pe2�Ei+1 − Ei�dt

+ �fi+1
s − 2fi

s + fi−1
s �dt + �fi+1

r − fi
r�dt . �4�

The forward Euler method used to get its predicted value
Ri

�p�,

Ri
�p� = Ri

�n� + Pe1�u�ri+1
�n� � − u�ri

�n���dt + Pe2�E�ri+1
�n� �

− E�ri
�n���dt + �fi+1

s�n� − 2fi
s�n� + fi−1

s�n��dt + �fi+1
r�n� − fi

r�n��dt ,

�5�

where Ri
�n� and fi

s�n� are the ith spring vector and spring force
at time step n, and fi

r�n� is the Brownian force for the ith bead
at time step n.

It can be easily shown that Nr1=NrC−RN−1−2RN−2− ¯

−�N−2�R2− �N−1�R1. Thus we can obtain the intermediate
location of each bead at the predictor step as follows:

�r1
�p� = rC

�n+1� −
1

N
�
k=1

N−1

kRN−k
�p�

r2
�p� = r1

�p� + R1
�p�

¯ ¯ ¯

rN
�p� = rN−1

�p� + RN−1
�p�

	 . �6�

�iii� First corrector step
If we remove the term associated with the spring force in

spring i to the left-hand side of Eq. �4�, we can calculate the
corrected spring length through the following equation:

Ri
�c1� + 2fi

s�c1�dt = Ri
�n� + Pe1
u� ri+1

�p� + ri+1
�n�

2
�

− u� ri
�p� + ri

�n�

2
�dt + Pe2
E� ri+1

�p� + ri+1
�n�

2
�

− E� ri
�p� + ri

�n�

2
�dt + �fi+1

s�n� + fi−1
s�c1��dt

+ �fi+1
r�n� − fi

r�n��dt , �7�

where Ri
�c1� and fi

s�c1� are ith spring vector and spring force in
the first corrected step. The term fi−1

s�c1� on the right-hand side
is known because we can sweep the index i from 1 to N−1.
For beads 1 and N, there is only one spring force on the
right-hand side. Equation �7� can be transferred to a cubic
equation on �i=Ri

�c1� /�NK,S and there is only one root of �i
in �0, 1�. After solving it, we can get the first corrected ith
spring length vector Ri

�c1�. Using the similar method men-
tioned above, we can figure out the first corrected location
ri

�c1� for bead i.
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�iv� Second corrector step
The second corrector step similar to the first corrector step

except for some terms on the right-hand side of the equation:

Ri
�c2� + 2fi

s�c2�dt = Ri
�n� + Pe1
u� ri+1

�c1� + ri+1
�n�

2
�

− u� ri
�c1� + ri

�n�

2
�dt + Pe2
E� ri+1

�c1� + ri+1
�n�

2
�

− E� ri
�c1� + ri

�n�

2
�dt + �fi+1

s�c1� + fi−1
s�c2��dt

+ �fi+1
r�n� − fi

r�n��dt , �8�

where Ri
�c2� and fi

s�c2� are ith spring vector and spring force in
the second corrected step. Using a similar method mentioned
in the first corrector step, we can figure out the second cor-
rected spring vector Ri

�c2� and location ri
�c2� for bead i.

�v� Checking step
We need to check whether the residual condition �

=��i=1
N−1�Ri

�c2�−Ri
�c1��2	�0 is satisfied, where �0=10−6 is the

prescribed criteria for the error in this study. If this condition
is satisfied, we let Ri

�n+1�=Ri
�c2� and begin the next time step;

if it is not satisfied, then we let Ri
�c1�=Ri

�c2�, ri
�c1�=ri

�c2� and
repeat steps �iv� and �v� again until the residual condition is
satisfied.

In electrokinetic flow, it is extremely difficult to remove
the effect of electro-osmotic flow �EOF� and keep the elec-
trophoresis unaffected at the same time. Some researchers
suggested using polyvinylpyrrolidone �PVP� to suppress or
screen the effect of EOF �15�. However, we found that the
adding of PVP also lowers down the electrophoretic mobility
of DNA molecules. It might be because PVP is positively
charged and thus it also binds to DNA molecules as it does to
the negatively charged surfaces of microfluidic devices. In
this study, the contribution of EOF to DNA dynamics, in
fact, is negligible because the large amount of ions in the
DNA buffer solution can suppress the EOF as mentioned in
�30,31�. Thus there is only one Péclet number Pe=Pe2

=
�EPEC

�kBT�/�b�� , from the contribution of electrophoretic flow. The
characteristic electric-field strength EC=�� /dS can be deter-
mined from the experiment with the known external voltage
drop �� and the width of small end of the contraction zone
dS. The drag coefficient of single bead is given by �=�tot /N,
where �tot is the total drag coefficient for a DNA chain. The
value of �EP=q /� depends on the charge density of a DNA
bead, which is affected by the composition of the buffer
solution �such as pH value�. In the simulation, we set Pe
=−21000 in order to achieve a quantitative agreement with
experiment observations at a voltage drop ��=100 V. Other
values Pe=−42000 and −84000 were also chosen to study
how the magnitude of electric field affects DNA dynamics.

B. Simulation of electric field in the contraction-expansion
microchannel

It has been observed in our previous work that the electric
field away from the reservoirs in a microfluidic channel is
nearly two dimensional �7,9�. Thus we can neglect the

electric-field component in the depth direction and only
solve for the 2D electric field in the contraction microchan-
nel. The dimensionless electric potential � is governed by
the Laplace equation �2�=0 and the dimensionless electric
field is given by E=−��, where the electric potential, the
length, and the electric field are nondimensionalized by ��,
dS, and EC=�� /dS, respectively. The dimensionless electric
potential is set to 0 at the inlet reservoir and 1 at the outlet
reservoir. The neutral condition n ·��=0 is prescribed on the
wall surface. We use the FEM to solve the governing equa-
tion with the following weak form:

��

e

�Ni · �Njd
��� j� = 0, �9�

where Ni and Nj are the interpolation functions. The bilinear
interpolation is used for the electric potential at the nodal
points. The electric field is first calculated at the element
level, and then we use the least-squares fitting method to get
the smooth values at the nodal points �29�:


�

e

NiNjd
�E j� = �

e

NiE
�e�d
 . �10�

The whole geometry is discretized by the structured mesh
�four-noded bilinear quadrilateral elements�, which is auto-
matically generated in the source code. The mesh density
affects the accuracy of the calculated potential and electric
field, especially at the location where the gradient is large. It
is well known that for Laplace equation, the bilinear interpo-
lated finite element solution �h satisfies ��h−���0
�C1h2����2, where �� is the exact solution, h is the maxi-
mum mesh size, and � · �0 and � · �2 are the �0 and �2 norm
�32�. Thus increasing the mesh density can quadratically
minimize the maximum relative error from the finite element
discretization. In this study, we kept on doubling the element
number �mesh density� until the maximum relative error
��h/2−�h�0 / ��h�0 is less than 0.1%.

Since the structured mesh is automatically generated, we
know exactly the layout of nodes and elements. Thus the
electric field at any location can be easily interpolated with-
out using the neighbor-to-neighbor or Octree search �33� in
the entire domain.

C. Analysis of the effect of electric field on DNA dynamics

In order to better analyze the effect of electric field on
DNA dynamics, we select channel no. 1 as an example and
pick four dimensionless locations �x0, y0, and z0� as the start-
ing points of the center of mass of DNA chains. Here we fix
x0=−4.9 where the electric field nearly constant. Also the
value of z0=0 is prescribed since the electric field is nearly
two dimensional. The y components of the starting points are
chosen as y0=0, 1.05, 2.1, and 3.15. The electric-field lines
�denoted as A, B, C, and D� passing these four starting points
are shown in Fig. 2�a�.

The movement of the ith bead relative to that of the center
of mass of a chain can be described by the following equa-
tion:
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d

dt
�ri − rC� = �fi

s,total + fi
r� −

1

N
�
i=1

N

fi
r + Pe � E�rC� · �ri − rC� .

�11�

Thus the conformation change of a DNA chain �i.e.,
the left-hand side term� is mainly determined by the elec-
tric-field gradient Pe�E. Since the electric field E satis-
fies � ·E=0 and �E=0, the electric-field gradient tensor
�E is a symmetric positive definitive tensor, i.e., �E
= � � �

� −� �, where �=
�Ex

�x and �=
�Ex

�y . Thus the movement of
a charged particle or polyelectrolyte in the electric field is
still extensional although the electric-field gradient tensor
is not constant �27�. Matrix Pe�E has two eigenvalues:
�1=Pe��2+�2 �associated with stretching� and �2
=−Pe��2+�2 �associated with compression�. For �=0, the
corresponding stretching and compression eigenvectors �di-
rections� are �1,0� and �0,1� if ��0, or �0,1� and �1,0� if
�	0. For ��0, the corresponding stretching and compres-
sion eigenvectors �directions� are �1, tan �� and �1,
tan��+� /2��, where tan �= ���2+�2−�� /� and −� /2	�

�� /2. This indicates that the stretching direction makes an
angle � with the x axis and the compression direction is
forming an angle of �+� /2 with the x axis. Also the stretch-
ing or compression direction is independent on the value of
the Péclet number.

Since the electric field and its gradient have been calcu-
lated by FEM, we can easily get the relation of stretching
angle �in degree� vs the x component of the field lines, which
is plotted in Fig. 2�b�. We can see that the stretching angle
changes suddenly from 0° �in the x axis direction� to 90° �in
the y axis direction� near the small end along the electric-
field line A. This indicates that DNA molecules are stretched
along the x axis and compressed along the y axis in the
contraction zone, while they are stretched along the y axis
and compressed along the x axis in the expansion zone. The
stretching angles along the other three electric-field lines are
not constant, but they also experience a sudden change near
the small end of the contraction zone.

In a 2D pure extensional hydrodynamic flow, the average
stretching of DNA molecules is related to the Deborah num-
ber defined as De=�relax�̇, where �relax is the longest relax-

(a)

(b)

(c)

(d)

FIG. 2. �Color online� �a� Four starting points and the electric-field lines for studying the DNA dynamics in the contraction-expansion
microchannel; �b� change in the stretching angle, distributions of �c� location-dependent Deborah number and �d� path-dependent accumu-
lated strain vs x-axis coordinate along the four electric-field lines.
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ation time for DNA chains and �̇ is the extensional rate
�18,19�. Similarly, we can also study the behavior of DNA
chains at different “electrophoretic” Deborah number since
the electrophoretic motion is still extensional. Due to the
non-uniform electric field, we can expect that the “electro-
phoretic” Deborah number is not constant in the whole mi-
crofluidic device. Using the same definition as the hydrody-
namic flow, the local dimensional electrophoretic velocity

field �EPECE, or Pe
kBT

b� E, can be transformed to matrix
dS� �̇ 0

0 −�̇ � · � x̃
ỹ � after coordinate transformation, where �x̃ , ỹ� is

dimensionless local coordinates and dS is the characteristic
length or the small-end size of the contraction zone. Since
DNA molecules experience stretching in the contraction area
and compression in the expansion area, we have the dimen-
sional localized extensional �or compression� rate �̇

= Pe
dS

kBT

b� ��E�2 sgn���, where � · �2 is the �2 norm of a matrix,
��E�2=��2+�2, and sgn�·� is the sign function �positive for
extension and negative for compression�. Thus the Deborah
number De=�relax

Pe
dS

kBT

b� ��E�2 sgn��� is proportional to the
Péclet number Pe, or the strength of electric field and is path
dependent.

For Pe=−21000, we plot the location-dependent Deborah
number vs the center-of-mass location along the electric-field
lines A, B, C, and D in Fig. 2�c�. We can see that the
location-dependent Deborah number first gradually reaches
its maximum value before approaching the small end of the
contraction zone �dimensionless location x=15� and then
rapidly decreases to the negative minimum value. This
means that the electric-field gradient has already exerted a
reverse compressive force to DNA chains before they exit
the small end of the contraction zone. The fact that the ab-
solute value of the maximum compression Deborah number
is larger than that of the maximum stretching Deborah num-
ber indicates that the speed of compression is higher than
that of stretching. With the electric-field gradient diminishes
along the expansion channel, the location-dependent Debo-
rah number approaches 0, showing that DNA chains are back
to the equilibrium state. The maximum stretching Deborah
number is achieved along the electric-field line D, the one
closest to the wall.

The maximum stretching length of DNA chains also de-
pends on the accumulated strain �, which has been used to
describe the deformation rate of an object and can be written
as �=�path�̇dt=�path

�̇

�EPEC�E�ds, where s is the dimensional
curve length of an electric-field line or path �15,16�. We have
�=�pathsgn���

��E�2

�E� ds̃, where s̃ is the dimensionless curve
length. Since the formula only contains the dimensionless
variables along the given path and does not include the con-
trolling parameter Pe, the accumulated strain is only path
dependent. We plot the accumulated strain along the electric-
field lines A, B, C, and D in Fig. 2�d�. The accumulated
strain gradually increases to its maximum value near the
small end of the contraction area, then decreases to zero in
the expansion area. The four accumulated strain curves over-
lap with one another in the expansion zone indicating that
the deformation of DNA chains in the expansion zone is
almost the same and unrelated to their upstream locations.

D. Procedures of the simulation of DNA dynamics

The simulation procedures of the fluorescence-dyed
�-DNA dynamics in the contraction-expansion microchannel
are given as follows:

�1� Import the FEM simulation results of the electric field
into the Brownian dynamics simulation. Since the con-
structed mesh is generated automatically in source code, we
know the exact location of any given element or node and it
is easy to find out the element number where a bead is lo-
cated. Then the electric field at any bead location can be
easily interpolated.

�2� Calculate the three-dimensional equilibrium distribu-
tion of 100 bead-spring wormlike chains and store their equi-
librium distribution in a file to be read in the next step.

�3� Simulate the DNA dynamics driven by the electro-
phoresis in the contraction-expansion microchannel by set-
ting the values for the controlling parameter Pe and the ini-
tial center-of-mass location of DNA chains. The
dimensionless time step �t is chosen as 110−5 for Pe=
−84000, and 210−5 for other two electric-field strengths.
However, the total time step n for each simulation is required
to satisfy the condition n�t ·Pe=−1.6107.

III. SIMULATION RESULTS AND DISCUSSION

A. Effect of the initial configuration

For a DNA chain moving in nonuniform electric field, it is
important to study the change in the fractional visual length
�the maximum distance between the beads vs the contour
length� with its center-of-mass location. Figure 3�a� shows
such curves for 100 individual DNA chains �the dash lines�
and their ensemble average �the solid bold line� along the
electric field line A at Pe=−21000. We can see that different
DNA chains experience different coil-stretching-compression
histories although their initial center-of-mass locations are
the same. This nonuniformity is due to the difference in the
initial chain conformation �16�. After ensemble averaging the
effect of the initial conformation, we find that the maximum
averaged fractional visual length is only around 0.24, i.e., the
averaged stretching length of DNA chains is around 5 �m
although some DNA chains can be stretched to 13 �m.

The effect of the initial configuration to DNA dynamics
can also be viewed in Fig. 3�b�, which shows the movement
and conformation change of two DNA chains at the same
dimensionless time series �0; 10; 14.1; 17; 26�. The unit
length in Fig. 3�b� stands for 20 �m, but the size of a DNA
chain is enlarged 10 times for better view. These two DNA
chains have the same initial center-of-mass location and the
electric-field strength Pe=−21000, but different initial con-
figuration. The symbols are used to label the center–of-mass
location of DNA chains at the same time. Those symbols
overlap with each other indicating that the speeds of DNA
chains are the same because of the same starting point. Both
DNA chains are stretched and aligned in the x-axis direction
in the contraction zone, but change their alignment in the
y-axis direction in the expansion zone. Although both expe-
rience the same coil-stretching-recoil transition in the
contraction-expansion channel, they display quite different
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behavior. The top DNA chain is initially in the coiled shape,
while the bottom one is partially stretched initially. It is
much more difficult to stretch a coiled DNA because the
magnitude of Pe�E�bC� · �bi−bC� is smaller than that of an
elongated chain at the same electric-field gradient. A longer
DNA chain has larger value of �Pe�E�bC� · �bi−bC��, thus it
can be more easily stretched as shown in Fig. 3�b�. We can
also see that both DNA chains are compressed in the x-axis
direction and stretched along the y axis in the expansion
zone. Finally, both of them revert back to the coiled states in
the expansion zone, but in different shapes from their initial
upstream configurations.

B. Effect of the initial location

Another important aspect to be studied is the effect of the
initial location on DNA dynamics. From Figs. 2�c� and 2�d�,

along electric-field lines A, B, C, and D, we know that the
maximum stretching Deborah numbers are 28, 29, 44, and
88, respectively, and the maximum accumulated strains are
2.55, 2.62, 2.86, and 3.2, respectively. Thus, we would ex-
pect the largest stretching along the electric-field line D and
the smallest stretching along the electric-field line A. This is
confirmed by Fig. 4�a�, which compares averaged fractional
visual lengths along the four electric-field lines A, B, C, and
D at Pe=−21000. We can see that the maximum averaged
fractional visual length along the electric-field line D is
around 0.255, while that along the electric-field line A is
approximately 0.24. Thus the difference of the maximum
averaged fractional visual length along two electric-field
lines is around 6.25%. A similar phenomenon occurs at a
higher electric-field strength Pe=−84000, where the differ-
ence of the maximum averaged fractional visual length along
the two electric-field lines A and D is around 12%.

We also observe that the averaged fractional visual length
slightly increases after the large drop outside the small end of
the contraction zone. This slight lift-up can be attributed to
the fact that the absolute value of the maximum compression
Deborah number is larger than that of the stretching Deborah
number as shown in Fig. 2�c�. In the contraction zone, the
visual length increases since DNA is stretched along the x
axis, thus it drops greatly outside the small end of the con-
traction zone because of the compression along the x axis.
Although the DNA size along the y axis is increasing due to
the stretching along the y axis, it is still less than the length
along the x axis until the visual length reaches its minimum
value. At this moment, DNA length along the x axis is the
same as that along the y axis. Then the overcompression
along the x-axis direction makes the DNA length along the y
axis longer than that along the x axis. Thus stretching along
the y axis would increase the visual length at the beginning
of the expansion zone. Since the compression Deborah num-
ber recedes to zero very quickly, eventually the DNA chains
relax back to their equilibrium state with smaller visual
lengths.

Figure 4�b� compares the dynamics of two DNA chains
with the same initial configuration, but at different initial
locations: one along the electric-field line A at the time series
�0; 10; 14.1; 17; 26� and the other one along the electric-field
line D at time �0; 10.8; 14.9; 19.2; 29.5� in order to assure
that they have the same x component of the center-of-mass
location xC. We can see that these two DNA chains display
almost the same conformation at the same value of xC except
at the small end of the contraction zone where the DNA
chain along the electric-field line D lifts up in order to follow
the electric-field line.

Although the effect of the initial y location on the DNA
dynamics is weak compared to the effect of the initial con-
figuration, it does affect the speed of a DNA chain. Figure
4�c� shows the conformation of two DNA chains with the
same initial configuration, at the same time series �0; 10;
14.1; 17; 26�, and under the same electric-field strength �Pe
=−21000�, but at different initial y locations �i.e., along
electric-field lines A and D, respectively�. After the same
period of time, we can see that the DNA chain along the
electric-field line A moves faster than that along the electric-
field line D. Since we use the same random series �i.e.,

(a)

(b)

FIG. 3. �Color online� �a� The fractional visual length of 100
DNA chains and their ensemble average vs the center-of-mass lo-
cations in the contraction-expansion channel at the electric-field
strength Pe=−21000; �b� effect of initial configuration to the dy-
namics of two DNA chains at the same initial location �on electric-
field line A� and electric-field strength.
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Brownian force� for these two DNA chains, the difference of
the center-of-mass location in the x axis can be described by
�xC=�0

t Pe�Ex�xC�t���dt�, where �Ex is the difference of Ex
along two electric-field lines. Because �Ex is positive in most
region of the contraction-expansion channel and the dimen-
sionless time period is large, we can see the obvious speed
difference.

C. Effect of the electric-field strength

The effect of the electric-field strength on DNA dynamics
is also very important. The larger electric-field strength pro-
vides a higher Deborah number to achieve longer stretching
as confirmed in Fig. 5�a�. Each curve is the averaged frac-
tional visual length of 100 DNA chains at the same initial
center-of-mass location �i.e., all along electric-field line A�

(a)

(b)

(c)

FIG. 4. �Color online� �a� The averaged fractional visual length
vs the center-of-mass locations in the contraction-expansion chan-
nel along the four electric-field lines at the electric-field strength
Pe=−21000; �b� dynamics of two DNA chains along electric-field
lines A and D with the same x-axis coordinates and electric-field
strength; �c� dynamics of two DNA chains along electric-field lines
A and D with the same time series and electric-field strength;

(a)

(b)

FIG. 5. �Color online� �a� The averaged fractional visual length
vs the center-of-mass locations in the contraction-expansion chan-
nel along the electric-field line A at three different electric-field
strength Pe=−21000, −42000, and −84000; �b� dynamics for two
DNA chains with the same initial configuration and x-axis coordi-
nates but at different electric-field strength Pe=−21000 and
−84000.
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but with different electric-field strengths. We can see that the
maximum stretching is achieved inside the contraction zone
and the largest stretching �with the maximum averaged frac-
tional visual length 0.42� is obtained at Pe=−84000. There is
a substantial difference between the maximum visual lengths
at these three different electric-field strengths. Thus the effect
of electric-field strength to DNA dynamics is much stronger
compared with the effect of the initial center-of-mass loca-
tion.

Figure 5�b� shows the dynamics of two DNA chains with
the same initial conformation and initial location, but at two
different electric-field strengths Pe=−21000 and Pe=
−84000. In order to assure that they have the same x com-
ponent of the center-of-mass location xC, the DNA chain at
the lower electric strength takes a larger time series �0; 10;
14.1; 17; 26� and the other one takes only one-fourth of the
previous value, i.e., a time series �0; 2.5; 3.525; 4.25; 6.25�.
We can see that DNA chains can be stretched longer under
larger electric-field strength.

D. Effect of geometries—length and small-end width
of the contraction zone

The maximum values of Deborah number and the accu-
mulated strain are two key factors to determine the stretching
of DNA molecules. Once the external electric-field strength
and the total channel length L are fixed, there might be two
ways to increase the maximum stretching of DNA chains in
the contraction zone. One is to shorten the width of the small
end dS while maintain the length of the contraction zone l
and the width of the large end dL. This would increase the
strength of the electric-field gradient so that the maximum
Deborah number also increases. The other way is to lengthen
the contraction zone while keep the widths of the small end
dS and the large end dL constant. This can raise the accumu-
lated path-dependent strain because the effective length of
path is augmented.

To examine the effects of length and small-end width of
contraction zone on DNA dynamics, we plot the Deborah
number and the accumulated strain along the central lines of
four different contraction-expansion microchannels �detailed
data are given in Table I� in Figs. 6�a� and 6�b�. It demon-
strates that channel no. 2 achieves the highest values for both
Deborah number and the accumulated strain. This is because
it obtains the highest electric-field gradient with the smallest
small-end width. For other channels, it is found that the
maximum Deborah number increases with decreasing the
length of the contraction zone due to the decreased total elec-
tric resistance �since the averaged cross-section section in-
creases with contraction zone shortened�. Thus the electric
field, electric-field gradient, and the Deborah number near
the small end increase with decreasing the length of the con-
traction zone. However, the accumulated strain still slightly
increases with increasing the length of the contraction zone
due to the increased integral path, which compensates the
loss of the electric-field gradient.

Curves of averaged fractional visual length vs center-of-
mass location are shown in Fig. 6�c�. Channel no. 2 again
achieves the highest stretching due to the highest Deborah

number and accumulated strain. Channel no. 1 has the lowest
stretching due to its lowest Deborah number although its
accumulated strain is just slightly higher than that in chan-
nels no. 3 and no. 4. However, this does not mean that the

(a)

(b)

(c)

FIG. 6. �Color online� �a� Location-dependent Deborah number
and �b� path-dependent accumulated strain vs x-axis coordinate
along the center lines in channels 1, 2, 3, and 4; �c� the averaged
fractional visual length vs the center-of-mass locations of DNA
molecules in these four channels.
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shorter contraction zone can produce larger stretching. In
fact, the length of the contraction zone in Channel no. 4 is
20 �m, almost the same length of the contour length of a
YOYO-1 dyed �-DNA molecule �21 �m�. The length of the
contraction zone cannot be too small compared with the con-
tour length of DNA molecules; otherwise, the stretching of
DNA molecules is limited by the highly decreased accumu-
lated strain, or DNA molecules do not have enough time to
be further stretched. From the simulation, decreasing the
small-end width can be an effective way to increase the
stretching amount. When the small-end width is comparable
to the Kuhn step length of a DNA molecule, we need to
consider the hydrodynamic interaction between the solid
wall and DNA chains �36–42�.

E. Free relaxation vs forced relaxation

Electrophoretic dynamics of DNA molecules in
contraction-expansion microchannel is quite different from
that in the bulk. The stretching relaxation in contraction-
expansion microchannel is due to the fast transition of
electric-field gradient. Thus we call this relaxation the forced
relaxation in order to distinct it from the free relaxation
�without any external force� in the bulk. Figure 7 shows the
comparison of the ensemble average of square of end-to-end
distance �re−e

2 � vs dimensionless time for both the free relax-
ation �dashed curve� and forced relaxation �solid curve, Pe
=−84000; the initial location of DNA molecules are along
the center line�. Here the forced relaxation curve was shifted
horizontally in order to get the same end-to-end distance as
the free relaxation at a dimensionless time around 3.5. The
free relaxation curve was obtained by averaging the relax-
ation processes of 100 DNA chains, which initially were uni-
formly stretched to a straight line with the size at 99% of its
full length. From the figure, we can see that it takes 7 unit
time for the forced relaxation to reach the equilibrium state,
while the free relaxation requires 97 unit time. Thus the
forced relaxation due to the reverse compression in the ex-
pansion zone �as mentioned in Sec. III B� can speed up the

relaxation of DNA molecules. It is worth to mention that a
DNA molecule is still partially stretched in the beginning of
the forced relaxation because part of its segments is in the
contraction zone.

F. Comparison between experiment and simulation

The coil-stretching-recoil transition of DNA molecules
can be verified by experimental observations �34� �detailed
information on experiment setups and preparation can also
be found in the supplemental materials �35��. In order to
clearly observe fluorescent DNA molecules under the micro-
scope, we used a 100 camera and a snapshot covering on
an area of around 90 �m by 58 �m. In Fig. 8, there are four
different DNA molecules particularly chosen from a large
number of DNA molecules taken in our experimental videos.
Trajectories of DNAs 1 and 3 are very close to the central
line, while DNA chains 2 and 4 are closer to the lower wall.
The center-of-mass locations of these DNA molecules are
represented by four different symbols in Fig. 8�a�. We can
see that center of trajectories of DNA chains overlap with the
corresponding electric-field lines. Figures 8�b� and 8�c� show

FIG. 7. �Color online� Comparison of forced relaxation and free
relaxation.

(a)

(b)

(c)

FIG. 8. �a� Trajectories of center-of-mass locations of four DNA
chains and corresponding electric-field lines; �b� comparison of ex-
periment and simulation results for the coil-stretch-recoil dynamics
of DNAs 1 and 3; �c� comparison of experiment and simulation
results for the coil-stretch-recoil dynamics of DNAs 2 and 4.
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the comparison between experiments and simulation on
DNA electrophoretic dynamics in contraction-expansion mi-
crochannel. By choosing the bead-spring chain with the simi-
lar initial configuration and the initial center-of-mass loca-
tion at the electric-field strength Pe=−21000 in the
simulation, we can achieve good qualitative agreement
�similar configurations and visual length� with experimental
results.

In Fig. 8�b�, initially DNA 1 is partially stretched �visual
length around 9.1 �m� in the contraction zone and the
electric-field gradient continues to stretch it until it reaches
the small end of the contraction zone for a length around
15 �m. Then the DNA molecule is quickly compressed back
to the folded shape with a length close to 8 �m when it
moves out of the contraction zone. DNA 3, on the other
hand, starts with a coiled shape and is barely stretched to a
length around 5 �m after experiencing the same distance in
the contraction zone. It takes less time to recoil back to its
equilibrium state than DNA 1. In Fig. 8�c�, we find a similar
behavior for DNAs 2 and 4. For DNA 2, its visual length just
slightly changes from 8.6 to 9.6 �m, then coils back to
6.8 �m. DNA 4 is slightly stretched to a length of 3.5 �m
at the small end before it recoils back. Thus it again shows
that the effect of initial configuration is very important for
the behavior of DNA chains at a fixed external electric field.

IV. CONCLUSIONS

In summary, we have numerically studied DNA dynamics
in different tapered contraction-expansion microchannels and
compared one with the experimental observations. Tapered

contraction-expansion channels can produce high electric
field and gradient. This unique characteristic can be used to
accelerate and stretch DNA molecules inside the contraction
zone and speed the relaxation or compression of DNA mol-
ecules in the expansion zone. The possible applications of
the contraction-expansion microchannel may include gene
delivery to cells and the electrophoretic separation of large
DNA molecules.

DNA dynamics in a specified tapered contraction-
expansion microchannel driven by the electrophoretic force
is affected by three important factors, i.e., the initial configu-
ration of DNA chains, the initial center-of-mass location, and
the external electric-field strength. DNA chains display a
large discrepancy in their behaviors at the same initial loca-
tion and electric-field strength is mainly due to the wide
distribution of their initial configurations. Different behav-
iors of DNA chains with different initial location and
electric-field strength can eventually contribute to the path-
dependent accumulated strain and location-dependent Debo-
rah number. The combination of FEM simulation and
Brownian dynamics simulation is successful in the study of
DNA dynamics in the contraction-expansion microchannels
and the simulation is in good agreement with experiments.
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